Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Symbolic ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Symbolic Logic
Article . 1989 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1989
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Definable equivalence relations on algebraically closed fields

Authors: van den Dries, Lou; Marker, David; Martin, Gary;

Definable equivalence relations on algebraically closed fields

Abstract

This article was inspired by the question: is there a definable equivalence relation on the field of complex numbers, each of whose equivalence classes has exactly two elements? The answer turned out to be no, as we now explain in greater detail.Let Κ be an algebraically closed field and let E be a definable equivalence relation on Κ. [Note: By “definable” we will always mean “definable with parameters”.] Either E has one cofinite class, or all classes are finite and there is a number d such that all but a finite set of classes have cardinality d. In the latter case let B be the finite set of elements of Κ which are not in a class of size d. We prove the following result.Theorem 1. a) If char(Κ) = 0 or char(Κ) = p > d, then ∣B∣ ≡ 1 (mod d).b) If char(Κ) = 2 and d = 2, then ∣B∣ ≡ 0 (mod 2).c) If char(Κ) = p > 2 and d = p + s, where 1 ≤ s ≤ p/2, then ∣B∣ ≡ p + 1 (mod d).Furthermore, a)−c) are the only restrictions on ≡B≡.If one is in the right mood, one can view this theorem as saying that the “algebraic cardinality” of the complex numbers is congruent to 1 (mod n) for every n.§1 contains a reduction of the problem to the special case where E is induced by a rational function in one variable. §2 contains the main calculations and the proofs of a)−c). §3 contains eight families of examples showing that all else is possible. In §4 we prove an analogous result for real closed fields.

Keywords

definable equivalence relation, Model-theoretic algebra, real closed fields, algebraically closed field, strong minimality, Model theory of fields

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!