Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Symbolic ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Symbolic Logic
Article . 1972 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Applications of trees to intermediate logics

Authors: Dov M. Gabbay;

Applications of trees to intermediate logics

Abstract

We investigate extensions of Heyting's predicate calculus (HPC). We relate geometric properties of the trees of Kripke models (see [2]) with schemas of HPC and thus obtain completeness theorems for several intermediate logics defined by schemas. Our main results are:(a) ∼(∀x ∼ ∼ϕ(x) Λ ∼∀xϕ(x)) is characterized by all Kripke models with trees T with the property that every point is below an endpoint. (From this we shall deduce Glivenko type theorems for this extension.)(b) The fragment of HPC without ∨ and ∃ is complete for all Kripke models with constant domains.We assume familiarity with Kripke [2]. Our notation is different from his since we want to stress properties of the trees. A Kripke model will be denoted by (Aα, ≤ 0), α ∈ T where (T, ≤, 0) is the tree with the least member 0 ∈ T and Aα, α ∈ T, is the model standing at the node α. The truth value at α of a formula ϕ(a1 … an) under the indicated assignment at α is denoted by [ϕ(a1 … an)]α.A Kripke model is said to be of constant domains if all the models Aα, α ∈ T, have the same domain.

Related Organizations
Keywords

Intermediate logics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!