
doi: 10.2307/2271511
In classical propositional logic it is well known that {7, ⊃ } is a functionally complete set with respect to a two-valued truth function modeling. I.e. all definable logical connectives are definable from 7 and ⊃. Other modelings of classical type propositional logics may have different functionally complete sets; for example, multivalued truth function modelings.This paper examines the question of a functionally complete set of logical connectives for intuitionistic propositional logic with respect to S. Kripke's modeling for intuitionistic logic.
Subsystems of classical logic (including intuitionistic logic)
Subsystems of classical logic (including intuitionistic logic)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
