
In this paper, we shall be concerned with the question of what conditions on minimal transformation groups will guarantee that they are disjoint. Generalizing a result of I. Bronstein about lifting of minimality through group extensions to associated bitransformation groups, we prove that in a large class of transformation groups, disjointness is equivalent to disjointness of their maximal equicontinuous factors. In the abelian case, this means that disjointness is equivalent to no common factor in the class of flows discussed.
Topological dynamics, Transformation groups and semigroups (topological aspects)
Topological dynamics, Transformation groups and semigroups (topological aspects)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
