
The metric dimension of a compact metric space is defined here as the order of growth of the exponential metric entropy of the space. The metric dimension depends on the metric, but is always bounded below by the topological dimension. Moreover, there is always an equivalent metric in which the metric and topological dimensions agree. This result may be used to define the topological dimension in terms of the metric entropy as the infimum of the metric dimension taken over all metrics.
topology, Dimension theory in general topology
topology, Dimension theory in general topology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
