
Based on the theory of differential equations on manifolds, existence and uniqueness results are proved for a class of mixed systems of differential and algebraic equations as they occur in various applications. Both the autonomous and nonautonomous case are considered. Moreover, a class of algebraically incomplete systems is introduced for which existence and uniqueness results only hold on certain lower-dimensional manifolds. This class includes systems for which the application of ODE-solvers is known to lead to difficulties. Finally, some solution approach based on continuation techniques is outlined.
existence, uniqueness, continuation techniques, Nonlinear ordinary differential equations and systems, Applications of dynamical systems, non-autonomous, Numerical methods for initial value problems involving ordinary differential equations, differential-algebraic equations, manifolds
existence, uniqueness, continuation techniques, Nonlinear ordinary differential equations and systems, Applications of dynamical systems, non-autonomous, Numerical methods for initial value problems involving ordinary differential equations, differential-algebraic equations, manifolds
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
