
The product integration method is used for the numerical solution of weakly singular integral equations of the second kind. These equations often have solutions which have derivative singularities at the endpoints of the range of integration. Therefore, the order of convergence results of de Hoog and Weiss for smooth solutions do not hold in general. In this paper it is shown that their results may be regained for the general case by using an appropriate nonuniform mesh. The spacing of the knot points is defined by the behavior of the solution at the endpoints. If the solution is smooth enough the mesh becomes uniform. Numerical examples are given.
numerical examples, weakly singular integral equations, Numerical methods for integral equations, Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type), second kind, product integration method
numerical examples, weakly singular integral equations, Numerical methods for integral equations, Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type), second kind, product integration method
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 74 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
