Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Annals of Mathematics
Article . 1983 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Horocycle Flows, Joinings and Rigidity of Products

Horocycle flows, joinings and rigidity of products
Authors: Ratner, Marina;

Horocycle Flows, Joinings and Rigidity of Products

Abstract

This is a fairly long and technical paper in which a number of interesting results are proved. The paper is divided into two parts: part I deals with joinings of horocylce flows; part II deals with rigidity of products of horocycle flows. We quote a sample result from each part which, hopefully, will convey the flavour of the results but which are chosen also to avoid having to give technical definitions in this review. Part I (Corollary 7). Let \(\Gamma\) be a discrete subgroup of \(G=SL(2,R),\) let \(h_ t\) be the horocycle flow on \((\Gamma \setminus G,\mu)\) and let \(h=h_ 1\). Then the number of non-isomorphic ergodic self-joinings of h is infinite if \(\Gamma\) is arithmetic and finite if \(\Gamma\) is not arithmetic. If \(\Gamma\) is maximal and not arithmetic then h has only trivial ergodic self-joinings. Part II (Corollary 14). Let \(h_ t\) be the horocycle flow on (\(\Gamma\) \(\setminus G,\mu)\) where \(\Gamma\) is maximal and not arithmetic. Then \(h_ 1=h\) is product prime. There is much more to this paper than these results and we strongly recommend any interested reader to read the description of results, which takes up the first ten pages of the paper, to find out more detailed information on the content and consequences of these results.

Keywords

Geodesic flows in symplectic geometry and contact geometry, Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.), One-parameter continuous families of measure-preserving transformations, ergodic self-joinings, rigidity of products of horocycle flows, joinings of horocylce flows

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 10%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!