
The authors prove a theorem for the existence of a solution of the nonlinear elliptic equation \(-\Delta u+2=R(x)\ell\) 4, \(u\in S\) 2 under some conditions on R(x) but not symmetry. This is the first existence result where R(x) is not symmetric. The proof of the existence uses a mass center analysis technique and a continuous flow in H 1(S 2) controlled by \(\nabla R\).
Variational methods for second-order elliptic equations, mass center, flow, existence, Nonlinear elliptic equations, Global differential geometry
Variational methods for second-order elliptic equations, mass center, flow, existence, Nonlinear elliptic equations, Global differential geometry
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
