
handle: 11391/117434
We show that the critical set generated by the Mountain Pass Theorem of Ambrosetti and Rabinowitz must have a well-defined structure. In particular, if the underlying Banach space is infinite dimensional then either the critical set contains a saddle point of mountain-pass type, or the set of local minima intersects at least two components of the set of saddle points. Related conclusions are also established for the finite dimensional case, and when other special conditions are assumed. Throughout the paper, no hypotheses of nondegeneracy are required on the critical set.
The mountain pass theorem; critical point theory; nonlinear functional analysis, Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces, Mountain pass theorem, structure of the critical set
The mountain pass theorem; critical point theory; nonlinear functional analysis, Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces, Mountain pass theorem, structure of the critical set
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 38 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
