Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Transactions of the ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Transactions of the American Mathematical Society
Article . 1960 . Peer-reviewed
Data sources: Crossref
Transactions of the American Mathematical Society
Article . 1960 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Elementary Properties of Ordered Abelian Groups

Elementary properties of ordered abelian groups
Authors: Robinson, Abraham; Zakon, Elias;

Elementary Properties of Ordered Abelian Groups

Abstract

Introduction. A complete classification of abelian groups by their elementary properties (i.e. properties that can be formalized in the lower predicate calculus) was given by Szmielew [9]. No such attempt, however, has so far been made with respect to ordered groups. In the present paper the classification by elementary properties will be carried out for all archimedean ordered abelian groups and, moreover, for a certain more general class of groups which we shall call regularly ordered. Simultaneously, necessary and sufficient conditions will be established for two such groups to be elementarily equivalent, i.e. to have all their elementary properties in common (see Theorem 4.7). By a complete classification of a class of groups we mean its partition into disjoint subclasses in such a way that two groups belong to one subclass if, and only if, they are elementarily equivalent. This goal will be attained by setting up a series of (finite or infinite) complete systems of axioms, each system defining a certain subclass of ordered abelian groups. The notation and terminology of [8] will be used throughout. In particular, the concept of model-completeness introduced in [8] and [7] will be applied. A novelty feature of the present paper is that the method based on model-completeness will be combined with what we shall call "adjunction of new relations." To illustrate the usefulness of the method, we shall also apply it to give new simplified proofs of some theorems by Langford and Tarski on the completeness of certain systems of axioms referring to ordered sets. This will constitute an additional result of the paper (see ?2). 1. Preliminaries, terminology and notation. The concept of an ordered set can be formalized in the lower predicate calculus by means of the following system of axioms based on a binary relation of "equivalence," E(x, y), (read: "x is equivalent to y") and a binary relation of "order," Q(x, y) (read: "x is less than, or equivalent to, y"):

Keywords

philosophy and foundations of mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 1%
Average
bronze
Beta
sdg_colorsSDGs:
Related to Research communities