Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Transactions of the ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1956
Data sources: zbMATH Open
Transactions of the American Mathematical Society
Article . 1956 . Peer-reviewed
Data sources: Crossref
Transactions of the American Mathematical Society
Article . 1956 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

Generalized Analytic Functions

Generalized analytic functions
Authors: Arens, Richard; Singer, I. M.;

Generalized Analytic Functions

Abstract

algebra; the group r becomes the boundary of the disc, and all functions take their maximum modulus on r. For interior points r of the disc, there is a measure on r such that the value at r is given by an integral of the boundary values. This "Poisson integral" is studied in detail, and it is shown that one of these "generalized holomorphic" functionsf cannot vanish on an open set of the boundary which has positive measure with respect to all of these harmonic measures. Moreover, when G has sufficiently many continuous "characters" (with values in the unit disc), and f vanishes on a nonvoid open set, then f =0. In particular, the algebra becomes an integral domain. We can thus make arbitrarily huge (semi-simple) Banach algebras which are integral domains. We wish to cite some work related to ours done by Goldman [VI] and by Mackey [VII]. Goldman states 3.1 when G is a totally ordered discrete group. Moreover, our 4.6 was motivated by a discussion with him concerning possible generalizations of the classical case of the disc. Mackey also states 3.1 and has a complicated Cauchy integral formula. His point of view is much

Keywords

Abstract Spaces, Functional Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Average
Top 1%
Top 10%
bronze
Beta
sdg_colorsSDGs:
Related to Research communities