Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Transactions of the ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Transactions of the American Mathematical Society
Article . 1948 . Peer-reviewed
Data sources: Crossref
Transactions of the American Mathematical Society
Article . 1948 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Manifolds of Difference Polynomials

Manifolds of difference polynomials
Authors: Cohn, Richard M.;

Manifolds of Difference Polynomials

Abstract

1. It is the purpose of this paper to develop in some detail the structure of the manifolds determined by systems of difference polynomials. Our results will necessarily be confined to the case of polynomials in an abstract field, since a suitable existence theorem for analytic difference equations is not available. The ideal theory, developed by J. F. Ritt and H. W. Raudenbush(1) for abstract systems of difference polynomials, is therefore fundamental in our work. 2. In Part I of our paper we describe a theoretical method for elimination of unknowns in systems of algebraic difference equations. We employ this method to prove analogues for difference fields of fundamental theorems of algebra on field extensions. With the aid of these results we show in Theorem III that the number of arbitrary(2) unknowns in a prime difference ideal is constant for all possible choices of sets of arbitrary unknowns. 3. Part II is concerned with the manifold of a single algebraically irreducible difference polynomial in an abstract field. A factorization process for polynomials in analytic fields was developed by J. F. Ritt(3) in determinining the maximum number of irreducible manifolds, not held by polynomials of zero order, in the decomposition of the manifold of a first order difference polynomial. In Theorem IV we show that, when the Ritt factorization process is applied to a polynomial A in an abstract field, each of the polynomial sequences it produces actually determines a prime ideal held by A but not by any polynomial of lower order than A. Furthermore, all such prime ideals are obtained in this way. This constitutes a form of existence theorem for difference polynomials in abstract fields, and is fundamental in the further development of the theory. The irreducible manifolds of A determined by the factorization process we call the general solution of A. We shall see that, if A is of first order, all solutions are included in the general solution. This result confirms, in a gen-

Keywords

Ordinary differential equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Top 10%
Average
bronze