
doi: 10.2307/1427685
The paper gives an explicit expression for the expectation of the maximum attainable fraction of served customers in the long run for the single-server loss system GI/G/1/0, under the assumption of perfect information regarding the sequences {Xi, i = 1, 2, ·· ·} and {Yi, i = 1, 2, ·· ·} of interarrival times and service times, respectively. A heavy traffic result for this fraction is obtained for the system GI/M/1/0. The general result is based on an analysis of the random interval graph corresponding to the random intervals {[Ti, Ti + Yi), i = 1, 2, ·· ·}, in which {Ti} denotes the sequence of arrival epochs.
queues, IR-98369, METIS-140489, asymptotic behaviour, Queues and service in operations research, Queueing theory (aspects of probability theory)
queues, IR-98369, METIS-140489, asymptotic behaviour, Queues and service in operations research, Queueing theory (aspects of probability theory)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
