
doi: 10.2298/fil1904037d
After a brief review of the different types of quaternions, we develop a new perspective for dual quaternions with dividing two parts. Due to this new perspective, we will define the isotropic and nonisotropic dual quaternions. Then we will also give the basic algebraic concepts about the dual quaternions. Moreover, we define isotropic dual quaternionic curves and non-isotropic dual quaternionic curves. Via these definitions we find Serret-Frenet formulae for isotropic dual quaternionic curves. Finally, we will use these results to derive the Serret-Frenet formulae for non-isotropic dual quaternionic curves.
Classical differential geometry, Serret-Frenet frame, Non-Euclidean differential geometry, Quaternion and other division algebras: arithmetic, zeta functions, dual quaternionic curves, dual quaternions
Classical differential geometry, Serret-Frenet frame, Non-Euclidean differential geometry, Quaternion and other division algebras: arithmetic, zeta functions, dual quaternionic curves, dual quaternions
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
