
In this paper, we get the generating functions of the q-Chebyshev polynomials using ?z operator, which is ?z (f(z))= f(qz) for any given function f (z). Also considering explicit formulas of the q-Chebyshev polynomials, we give new generalizations of the q-Chebyshev polynomials called the incomplete q-Chebyshev polynomials of the first and second kind. We obtain recurrence relations and several properties of these polynomials. We show that there are connections between the incomplete q-Chebyshev polynomials and the some well-known polynomials.
Mathematics - Number Theory, FOS: Mathematics, Number Theory (math.NT), 11B39, 05A30
Mathematics - Number Theory, FOS: Mathematics, Number Theory (math.NT), 11B39, 05A30
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
