
A harmonious coloring of a k-uniform hypergraph H is a vertex coloring such that no two vertices in the same edge share the same color, and each k-element subset of colors appears on at most one edge. The harmonious number h(H) is the least number of colors needed for such a coloring. We prove that k-uniform hypergraphs of bounded maximum degree ? satisfy h(H) = O(k?k!m), where m is the number of edges in H which is best possible up to a multiplicative constant. Moreover, for every fixed ?, this constant tends to 1 with k ? ?. We use a novel method, called entropy compression, that emerged from the algorithmic version of the Lov?sz Local Lemma due to Moser and Tardos.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
