
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Non-destructive subsurface imaging methods based on the absorption or scattering of photons or neutrons are becoming increasingly popular in cultural asset conservation. However, these techniques are limited by physical and practical issues: their penetration depth may be insufficient for large items, and they usually necessitate transferring the objects of interest to specialised laboratories. The latter issue is recently being addressed by the development of portable sources, but artificial radiation can be harmful and is thus subjected to strict regulation. Muons are elementary particles that are abundantly and freely created in the atmosphere by cosmic-ray interactions. Their absorption and scattering in matter are respectively dependent on the density and elemental composition of the substance they traverse, suggesting that they could be used for subsurface remote imaging. This novel technique, dubbed "muography", has been used in applications ranging from geophysics to archaeology, but has remained largely unexplored for a wide range of cultural heritage objects that are small by muography standards but whose size and density are too large for conventional imaging methods. This document outlines the general arguments and some early simulation studies that aim at exploring the low-size limit of muography and its relevance for cultural heritage preservation.
Physics - Instrumentation and Detectors, FOS: Physical sciences, Instrumentation and Detectors (physics.ins-det)
Physics - Instrumentation and Detectors, FOS: Physical sciences, Instrumentation and Detectors (physics.ins-det)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).  | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.  | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).  | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.  | Average | 
