
doi: 10.22323/1.306.0064
arXiv: 1708.01483
Extragalactic relativistic jets are composed by charged particles and magnetic fields, as inferred from the synchrotron emission that we receive from them. The Larmor radii of the particles propagating along the magnetic field are much smaller than the scales of the problem, providing the necessary coherence to the system to treat is as a flow. We can thus study them using relativistic magnetohydrodynamics. As a first step, we have studied the structure of steady-state configurations of jets by using numerical simulations. We have used a helical field configuration and have changed different relevant parameters that control the way in which the energy flux is distributed in jets (namely, the proportion of the energy flux carried by internal, kinetic or magnetic energy). Our results show significant differences among the different kinds of jets. Finally, we also report on results based on synthetic maps of our simulated jets.
Comment: Submitted for publication in Proceedings of Science, as contribution to the proceedings of the XII Multifrequency Behaviour of High Energy Cosmic Sources Workshop, held in Palermo, 12-17 June 2017
Astrophysics - High Energy Astrophysical Phenomena, Astrophysics - Cosmology and Nongalactic Astrophysics
Astrophysics - High Energy Astrophysical Phenomena, Astrophysics - Cosmology and Nongalactic Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
