Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://pos.sissa.it...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://pos.sissa.it/217/016/p...
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.22323/1.217...
Article . 2015 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Graphene as a Lattice Field Theory

Authors: Costas Strouthos; Simon Hands; Wes Armour;

Graphene as a Lattice Field Theory

Abstract

We introduce effective field theories for the electronic properties of graphene in terms of relativistic fermions propagating in 2+1 dimensions, and outline how strong inter-electron interactions may be modelled by numerical simulation of a lattice field theory. For strong enough coupling an insulating state can form via condensation of particle-hole pairs, and it is demonstrated that this is a theoretical possibility for monolayer graphene. For bilayer graphene the effect of an interlayer bias voltage can be modelled by the introduction of a chemical potential (akin to isopsin chemical potential in QCD) with no accompanying sign problem; simulations reveal the presence of strong interactions among the residual degrees of freedom at the resulting Fermi surface, which is disrupted by an excitonic condensate. We also present preliminary results for the quasiparticle dispersion, which permit direct estimates of both the Fermi momentum and the induced gap.

invited talk at 9th International Workshop on Critical Point and Onset of Deconfinement - CPOD2014, 17-12 November 2014, ZiF, University of Bielefeld, Germany

Keywords

Nuclear Theory (nucl-th), Condensed Matter - Strongly Correlated Electrons, High Energy Physics - Lattice, Nuclear Theory, Strongly Correlated Electrons (cond-mat.str-el), High Energy Physics - Lattice (hep-lat), FOS: Physical sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid