
In this paper, we design some iterative schemes for solving operator equation $ Lu=f $, where $ L:Hrightarrow H $ is a bounded, invertible and self-adjoint operator on a separable Hilbert space $ H $. In this concern, Richardson and Chebyshev iterative methods are two outstanding as well as long-standing ones. They can be implemented in different ways via different concepts.In this paper, these schemes exploit the almost recently developed notion of g-frames which result in modified convergence rates compared with early computed ones in corresponding classical formulations. In fact, these convergence rates are formed by the lower and upper bounds of the given g-frame. Therefore, we can determine any convergence rate by considering an appropriate g-frame.
$g$-frame, Operator equation, Hilbert space, QA1-939, Chebyshev polynomials, Iterative method, Mathematics
$g$-frame, Operator equation, Hilbert space, QA1-939, Chebyshev polynomials, Iterative method, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
