Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Statistical Applicat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Data LMU
Research . 2007
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multiple Testing for SNP-SNP Interactions

Authors: S Weidinger; Carolin Strobl; H-Erich Wichmann; Anne-Laure Boulesteix; Stefan Wagenpfeil;

Multiple Testing for SNP-SNP Interactions

Abstract

Most genetic diseases are complex, i.e. associated to combinations of SNPs rather than individual SNPs. In the last few years, this topic has often been addressed in terms of SNP-SNP interaction patterns given as expressions linked by logical operators. Methods for multiple testing in high-dimensional settings can be applied when many SNPs are considered simultaneously. However, another less well-known multiple testing problem arises within a fixed subset of SNPs when the logic expression is chosen optimally. In this article, we propose a general asymptotic approach for deriving the distribution of the maximally selected chi-square statistic in various situations. We show how this result can be used for testing logic expressions - in particular SNP-SNP interaction patterns - while controlling for multiple comparisons. Simulations show that our method provides multiple testing adjustments when the logic expression is chosen such as to maximize the statistic. Its benefit is demonstrated through an application to a real dataset from a large population-based study considering allergy and asthma in KORA. An implementation of our method is available from the Comprehensive R Archive Network (CRAN) as R package 'SNPmaxsel'.

Keywords

Chi-Square Distribution, Humans, Computer Simulation, Genetic Predisposition to Disease, Polymorphism, Single Nucleotide, Linkage Disequilibrium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%
bronze