
AbstractWe consider combinatorial principles based on playing several two person games simultaneously. We call strategies for playing two or more games simultaneously parallel. The principles are easy consequences of the determinacy of games, in particular they are true for all finite games. We shall show that the principles fail for infinite games. The statements of these principles are of lower logical complexity than the sentence expressing the determinacy of games, therefore, they can be studied in weak axiomatic systems for arithmetic (Bounded Arithmetic). We pose several open problems about the provability of these statements in Bounded Arithmetic and related computational problems.
First-order arithmetic and fragments, combinatorial principles, Multistage and repeated games, Complexity classes (hierarchies, relations among complexity classes, etc.), bounded arithmetic, determinacy, 2-person games, simultaneous playing of two-person games
First-order arithmetic and fragments, combinatorial principles, Multistage and repeated games, Complexity classes (hierarchies, relations among complexity classes, etc.), bounded arithmetic, determinacy, 2-person games, simultaneous playing of two-person games
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
