
doi: 10.2172/4266432
The integrated processes of nuclear industry are considered to define the nature of wastes. Processes for recovery and preparation of U and Th fuels produce wastes containing concentrated radioactive materials which present problems of confinement and dispersal. Fundamentals of waste treatment are considered from the standpoint of processes in which radioactive materials become a factor such as naturally occurring feed materials, fission products, and elements produced by parasitic neutron capture. In addition, the origin of concentrated fission product wastes is examined, as well as characteristics of present wastes and the level of fission products in wastes. Also, comments are included on high-level wastes from processes other than solvent extraction, active gaseous wastes, and low- to intermediate-level liquid wastes. (J.R.D.)
Neutrons, Thorium, Capture, 600, Fuels, 620, Solvent Extraction, Radioactivity, Recovery, Radioactive Waste, Fission Products, Levels, Waste Processing, Preparation, Waste Solutions, Uranium, Gases
Neutrons, Thorium, Capture, 600, Fuels, 620, Solvent Extraction, Radioactivity, Recovery, Radioactive Waste, Fission Products, Levels, Waste Processing, Preparation, Waste Solutions, Uranium, Gases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
