Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://info.ornl.go...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spark Plasma Sintering of Ultracapacitors

Authors: Curtis W. Hill; Lynn A. Boatner; Dennis Tucker; James A. Kolopus; Zhongyang Cheng;

Spark Plasma Sintering of Ultracapacitors

Abstract

A solid-state ultracapacitor module to replace standard electrochemical batteries would achieve major performance gains and mass/volume reduction. This report summarizes a project to evaluate an alternative sintering process to produce a solid-state ultracapacitor to overcome the limitations of both the electrochemical batteries presently in use on spacecraft and of currently available electrochemical ultracapacitors. It will provide a robust energy storage device with higher reliability, wider working temperature range, longer lifetime, and less weight and volume than electrochemical batteries. As modern electronics decrease in size, more efficient and robust remote power is needed. Current state-of-the-art rechargeable batteries cannot be rapidly charged, contain harmful chemicals, and suffer from early wear-out mechanisms. Solid-state ultracapacitors are recyclable energy storage devices that offer the promise of higher power and a greater number of charge/discharge cycles than current rechargeable batteries. In addition, the theoretical energy density when compared to current electrochemical batteries indicates that a significant weight savings is possible. This is a project to develop a very high density solid-state ultracapacitor with giant permittivity and acceptable dielectric loss to overcome the energy-density barrier such that it will be a suitable replacement for batteries.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities