Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao King's College, Lond...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal of Cardiovascular Drugs
Article . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Drug Treatment of Combined Hyperlipidemia

Authors: Wierzbicki, A S; Mikhailidis, D P; Wray, R;

Drug Treatment of Combined Hyperlipidemia

Abstract

Combined hyperlipidemia is increasing in frequency and is the most common lipid disorder associated with obesity, insulin resistance and diabetes mellitus. It is associated with other features of the metabolic syndrome including hypertension, hyperuricemia, hyperinsulinemia and highly atherogenic subfractions of lipoprotein remnant particles including small dense low density lipoprotein-cholesterol. This review examines the mechanisms by which combined hyperlipidemia arises and the various drugs including fibric acid derivatives, hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, and nicotinic acid which can be used either as monotherapy or in combination to manage it and to improve prognosis from atherosclerotic disease in diabetes mellitus, insulin resistant states and primary combined hyperlipidemia. The therapeutic approach to combined hyperlipidemia involves determination of whether the cause is hepatocyte damage or metabolic derangements. Combined hyperlipidemia due to hepatocyte damage should be treated by attention to the primary cause. In the case of metabolic dysfunction because of imbalance in glucose and fat metabolism, therapy of diabetes mellitus and obesity should be optimised prior to commencement of lipid lowering drugs. Both fibric acid derivatives and HMG-CoA reductase inhibitors can be used in the treatment of combined hyperlipidemia with fibric acid derivatives having greater effects on triglycerides and HMG-CoA reductase inhibitors on LDL-C though both have effects on the other cardiovascular risk factors. There is some evidence of benefit with both interventions in mild combined hyperlipidemias and large scale trials are underway. Fibric acid derivatives and HMG-CoA reductase inhibitor therapy can be combined with care, provided that gemfibrozil is avoided, fibric acid derivatives are given in the mornings and shorter half -life HMG-CoA reductase inhibitors are used at night. Combined hyperlipidemia emergencies occur with predominant hypertriglyceridemia in pregnancy or as a cause of pancreatitis. Therapy in the former should aim to reduce chylomicron production by a low fat diet and intervention to suppress VLDL-C secretion using omega-3 fatty acids. In the latter case, fluid therapy alone and medium chain plasma triglyceride infusions usually reduce levels satisfactorily though apheresis may be required. Blood glucose levels also need aggressive management in these conditions. Combined hyperlipidemia is likely to become an increasing problem with the increase in the prevalence of obesity and diabetes mellitus and needs aggressive management to reduce cardiovascular risk.

Keywords

Liver Diseases, Hyperlipidemia, Familial Combined, 610, Pregnancy Complications, Clofibric Acid, Diabetes Mellitus, Type 2, Fenofibrate, Pancreatitis, Pregnancy, Acute Disease, Humans, Female, Obesity, Hydroxymethylglutaryl-CoA Reductase Inhibitors, Insulin Resistance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!