
handle: 11343/29514
We consider a classical surplus process where the insurer can choose a different level of reinsurance at the start of each year. We assume the insurer’s objective is to minimise the probability of ruin up to some given time horizon, either in discrete or continuous time. We develop formulae for ruin probabilities under the optimal reinsurance strategy, i.e. the optimal retention each year as the surplus changes and the period until the time horizon shortens. For our compound Poisson process, it is not feasible to evaluate these formulae, and hence determine the optimal strategies, in any but the simplest cases. We show how we can determine the optimal strategies by approximating the (compound Poisson) aggregate claims distributions by translated gamma distributions, and, alternatively, by approximating the compound Poisson process by a translated gamma process.
Risk theory, insurance, Finance and Investment, Banking
Risk theory, insurance, Finance and Investment, Banking
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
