
We consider the Noether Problem for stable and retract rationality for the sequence of $d$-torsion subgroups $T[d]$ of a torus $T$, $d\geq 1$. We show that the answer to these questions only depends on $d\pmod{e(T)}$, where $e(T)$ is the period of the generic $T$-torsor. When $T$ is the norm one torus associated to a finite Galois extension, we find all $d$ such that the Noether Problem for retract rationality has a positive solution for $d$. We also give an application to the Grothendieck ring of stacks.
Mathematics - Algebraic Geometry, FOS: Mathematics, Algebraic Geometry (math.AG)
Mathematics - Algebraic Geometry, FOS: Mathematics, Algebraic Geometry (math.AG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
