Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2140/gtm.19...
Article . 1999 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 1998
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Foliation cones

Authors: Cantwell, John; Conlon, Lawrence;

Foliation cones

Abstract

David Gabai showed that disk decomposable knot and link complements carry taut foliations of depth one. In an arbitrary sutured 3-manifold M, such foliations F, if they exist at all, are determined up to isotopy by an associated ray [F] issuing from the origin in H^1(M;R) and meeting points of the integer lattice H^1(M;Z). Here we show that there is a finite family of nonoverlapping, convex, polyhedral cones in H^1(M;R) such that the rays meeting integer lattice points in the interiors of these cones are exactly the rays [F]. In the irreducible case, each of these cones corresponds to a pseudo-Anosov flow and can be computed by a Markov matrix associated to the flow. Examples show that, in disk decomposable cases, these are effectively computable. Our result extends to depth one a well known theorem of Thurston for fibered 3-manifolds. The depth one theory applies to higher depth as well.

52 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTMon2/paper3.abs.html

Keywords

Mathematics - Geometric Topology, 57R30, 57M25, 58F15, FOS: Mathematics, Geometric Topology (math.GT)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green