<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We consider random analytic functions given by a Taylor series with independent, centered complex Gaussian coefficients. We give a new sufficient condition for such a function to have bounded mean oscillations. Under a mild regularity assumption this condition is optimal. Using a theorem of Holland and Walsh, we give as a corollary a new bound for the norm of a random Gaussian Hankel matrix. Finally, we construct some exceptional Gaussian analytic functions which in particular disprove the conjecture that a random analytic function with bounded mean oscillations always has vanishing mean oscillations.
33 pages
Mathematics - Complex Variables, Probability (math.PR), FOS: Mathematics, 30B20 (Primary), 30H35, 47B80 (Secondary), Complex Variables (math.CV), Mathematics - Probability
Mathematics - Complex Variables, Probability (math.PR), FOS: Mathematics, 30B20 (Primary), 30H35, 47B80 (Secondary), Complex Variables (math.CV), Mathematics - Probability
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |