Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estimation of an Empirical Fishery Model: A Two-Stage Approach

Authors: Junjie Zhang; Martin D. Smith;

Estimation of an Empirical Fishery Model: A Two-Stage Approach

Abstract

Abstract U.S. federal law calls for an end to overfishing, but measuring overfishing requires knowledge of bioeconomic parameters. Using microlevel economic data from the commercial fishery, this paper proposes a two-stage approach to estimate these parameters for a generalized fishery model. In the first stage, a fishery production function is consistently estimated by a within-period estimator treating the latent stock as a fixed effect. The estimated stock is then substituted into an equation of fish stock dynamics to estimate all other biological parameters. The bootstrap approach is used to correct the standard errors in the two-stage model. This method is applied to the reef-fish fishery in the northeastern Gulf of Mexico. The traditional method, which uses catch-per-unit-effort as a stock proxy, significantly overstates the optimal harvest level.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!