Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Stochastic Volatility Forward Libor Model with a Term Structure of Volatility Smiles

Authors: Vladimir Piterbarg;

A Stochastic Volatility Forward Libor Model with a Term Structure of Volatility Smiles

Abstract

Volatility smiles of European swaptions of various expiries and maturities typically have different slopes. This important feature of interest rate markets has not been incorporated in any of the practical interest rate models available to date. In this paper, we build a model that treats the swaption skew matrix as a market input and is calibrated to it. The model is constructed as an extension of a Stochastic Volatility Forward Libor model, with local volatility functions imposed upon forward Libor rates being time-dependent and Libor-rate specific. The focus of the paper is on deriving efficient European swaption approximation formulas that allow calibration of the model to all European swaptions across all expiries, maturities and strikes. The main conceptual contribution of the paper is its focus on recovering all available market volatility skew information across a full swaption grid within a consistent model. The model we develop has a potential to change the way skew calibration is approached, in the same way the introduction of the log-normal forward Libor model had changed the way volatility calibration is approached. The main technical contribution of the paper is a formula for the "effective" skew in a stochastic volatility model, a formula that relates a total amount of skew generated by the model over a given time period to the time-dependent slope of the instantaneous local volatility function. A new "effective" volatility approximation for stochastic volatility models with time-dependent volatility functions is also derived. The formulas we obtain are simple and intuitive; their applicability goes beyond interest rate modeling.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!