Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Plant S...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Plant Science
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Plant Science
Article . 2024
Data sources: DOAJ
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

Green Pepper Fruits Counting Based on Improved Deepsort and Optimized Yolov5s

Authors: Pengcheng Du; Shang Chen; Xu Li; Wenwu Hu; Nan Lan; Xiangming Lei; Yang Xiang;

Green Pepper Fruits Counting Based on Improved Deepsort and Optimized Yolov5s

Abstract

IntroductionGreen pepper yield estimation is crucial for establishing harvest and storage strategies.MethodThis paper proposes an automatic counting method for green pepper fruits based on object detection and multi-object tracking algorithm. Green pepper fruits have colors similar to leaves and are often occluded by each other, posing challenges for detection. Based on the YOLOv5s, the CS_YOLOv5s model is specifically designed for green pepper fruit detection. In the CS_YOLOv5s model, a Slim-Nick combined with GSConv structure is utilized in the Neck to reduce model parameters while enhancing detection speed. Additionally, the CBAM attention mechanism is integrated into the Neck to enhance the feature perception of green peppers at various locations and enhance the feature extraction capabilities of the model.ResultAccording to the test results, the CS_YOLOv5s model of mAP, Precision and Recall, and Detection time of a single image are 98.96%, 95%, 97.3%, and 6.3 ms respectively. Compared to the YOLOv5s model, the Detection time of a single image is reduced by 34.4%, while Recall and mAP values are improved. Additionally, for green pepper fruit tracking, this paper combines appearance matching algorithms and track optimization algorithms from SportsTrack to optimize the DeepSort algorithm. Considering three different scenarios of tracking, the MOTA and MOTP are stable, but the ID switch is reduced by 29.41%. Based on the CS_YOLOv5s model, the counting performance before and after DeepSort optimization is compared. For green pepper counting in videos, the optimized DeepSort algorithm achieves ACP (Average Counting Precision), MAE (Mean Absolute Error), and RMSE (Root Mean Squared Error) values of 95.33%, 3.33, and 3.74, respectively. Compared to the original algorithm, ACP increases by 7.2%, while MAE and RMSE decrease by 6.67 and 6.94, respectively. Additionally, Based on the optimized DeepSort, the fruit counting results using YOLOv5s model and CS_YOLOv5s model were compared, and the results show that using the better object detector CS_YOLOv5s has better counting accuracy and robustness.

Related Organizations
Keywords

green pepper, track tracking, DeepSORT, fruit counting, deep learning, Plant culture, Plant Science, SB1-1110

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold