Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://doi.org/10.2139/ssrn.4...
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Gradient Microstructures for Flow-Boiling Enhancement

Authors: Christopher Salmean; Huihe Qiu;

Gradient Microstructures for Flow-Boiling Enhancement

Abstract

Herein, we apply grayscale lithography to produce novel gradient microstructures, demonstrating the enhancement of flow boiling through the manipulation of drag forces upon the forming bubbles. The use of engineered 3D anisotropy allowed directional control of boiling enhancement, with respective critical heat flux and peak heat transfer coefficient enhancements of up to 20% and 93% observed over the unstructured substrate. It is our suspicion that the sheltering of bubbles inside of cavity microstructures deteriorates their departure characteristics, and that the combination of induced turbulence and available surfaces to capture passing liquid is beneficial for protruding microstructures. We demonstrate the promising novel implementation of gradient microstructures in the boiling discipline, which may serve as a useful foundation for future work. The enclosed approach to boiling enhancement shows a potential future direction for engineered boiling microstructures, wherein bubble dynamics are directly manipulated on bespoke, 3-dimensional substrates, allowing the transfer of large heat fluxes at low wall temperatures.

Country
China (People's Republic of)
Related Organizations
Keywords

Gradient microstructures, Flow boiling, Bubble dynamics, Grayscale lithography, 620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!