Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
SSRN Electronic Journal
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

Integrated Biomarker Response in Signal Crayfish Pacifastacus Leniusculus Exposed to Diphenhydramine

Authors: Tuyen Van Nguyen; Adam Bořík; Josef Velíšek; Antonín Kouba; Vladimír Žlábek; Anna Koubová;

Integrated Biomarker Response in Signal Crayfish Pacifastacus Leniusculus Exposed to Diphenhydramine

Abstract

Diphenhydramine (DPH) is a pharmaceutical with multiple modes of action, primarily designed as an antihistamine therapeutic drug. Among antihistamines, DPH is a significant contaminant in the environment, frequently detected in surface waters, sediments, and tissues of aquatic biota. In the present study, signal crayfish Pacifastacus leniusculus was used as a model organism because of their prominent ecological roles in freshwater ecosystems. The biochemical effects were investigated in crayfish exposed to the environmental (low: 2 μg L-1), ten times elevated (medium: 20 μg L-1), and the sublethal (high: 200 μg L-1) nominal concentrations of DPH in water for 96 h. Lipid peroxidation, antioxidant enzyme activities, and acetylcholinesterase activity were assessed as toxicological biomarkers in crayfish hepatopancreas, gills, and muscles. Low and medium DPH exposure caused imbalances only in glutathione-like enzyme activities. Integrated biomarker response showed the absolute DPH toxicity effects on all tested tissues under high exposure. This study identified that high, short-term DPH exposure induced oxidative stress in crayfish on multiple tissue levels, with the most considerable extent in muscles.

Keywords

Water, Astacoidea, Glutathione, Antioxidants, Diphenhydramine, Pharmaceutical Preparations, Acetylcholinesterase, Animals, Biomarkers, Ecosystem

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!