
This paper studies a semiparametric single-index predictive regression model with multiple nonstationary predictors that exhibit co-movement behaviour. Orthogonal series expansion is employed to approximate the unknown link function in the model and the estimator is derived from an optimization under constraint. The main finding includes two types of super-consistency rates for the estimators of the index parameter. The central limit theorem is established for a plug-in estimator of the unknown link function. In the empirical studies, we provide ample evidence in favor of nonlinear predictability of the stock return using four pairs of nonstationary predictors.
Single-index model, Econometric and statistical methods, Predictive regression, Hermite orthogonal estimation, Dual super-consistency rates, Econometrics not elsewhere classified, Co-moving predictors
Single-index model, Econometric and statistical methods, Predictive regression, Hermite orthogonal estimation, Dual super-consistency rates, Econometrics not elsewhere classified, Co-moving predictors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
