
Abstract In this paper, we analyse the recent principal volatility components analysis procedure. The procedure overcomes several difficulties in modelling and forecasting the conditional covariance matrix in large dimensions arising from the curse of dimensionality. We show that outliers have a devastating effect on the construction of the principal volatility components and on the forecast of the conditional covariance matrix and consequently in economic and financial applications based on this forecast. We propose a robust procedure and analyse its finite sample properties by means of Monte Carlo experiments and also illustrate it using empirical data. The robust procedure outperforms the classical method in simulated and empirical data.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
