
doi: 10.2139/ssrn.2764140
This paper contributes to the theoretical and numerical analysis of discrete time dynamic principal-agent problems with continuous choice sets. We first provide a new and simplified proof for the recursive reformulation of the sequential dynamic principal-agent relationship. Next we prove the existence of a unique solution for the principal's value function, which solves the dynamic programming problem in the recursive formulation. By showing that the Bellman operator is a contraction mapping, we also obtain a convergence result for the value function iteration. To compute a solution for the problem, we have to solve a collection of static principal{agent problems at each iteration. Under the assumption that the agent's expected utility is a rational function of his action, we can transform the bi-level optimization problem into a standard nonlinear program. The final results of our solution method are numerical approximations of the policy and value functions for the dynamic principal-agent model. We illustrate our solution method by solving variations of two prominent social planning models from the economics literature.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
