
Estimating volatility from recent high frequency data, we revisit the question of the smoothness of the volatility process. Our main result is that log-volatility behaves essentially as a fractional Brownian motion with Hurst exponent H of order 0.1, at any reasonable time scale. This leads us to adopt the fractional stochastic volatility (FSV) model of Comte and Renault. We call our model Rough FSV (RFSV) to underline that, in contrast to FSV, H<1/2. We demonstrate that our RFSV model is remarkably consistent with financial time series data; one application is that it enables us to obtain improved forecasts of realized volatility. Furthermore, we find that although volatility is not long memory in the RFSV model, classical statistical procedures aiming at detecting volatility persistence tend to conclude the presence of long memory in data generated from it. This sheds light on why long memory of volatility has been widely accepted as a stylized fact. Finally, we provide a quantitative market microstructure-based foundation for our findings, relating the roughness of volatility to high frequency trading and order splitting.
FOS: Economics and business, Quantitative Finance - Trading and Market Microstructure, Statistical Finance (q-fin.ST), Quantitative Finance - Mathematical Finance, Quantitative Finance - Statistical Finance, [MATH]Mathematics [math], Mathematical Finance (q-fin.MF), Trading and Market Microstructure (q-fin.TR)
FOS: Economics and business, Quantitative Finance - Trading and Market Microstructure, Statistical Finance (q-fin.ST), Quantitative Finance - Mathematical Finance, Quantitative Finance - Statistical Finance, [MATH]Mathematics [math], Mathematical Finance (q-fin.MF), Trading and Market Microstructure (q-fin.TR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 559 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
