Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SSRN Electronic Jour...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SSRN Electronic Journal
Article . 2014 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2014
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Arbitrage-Free Prediction of the Implied Volatility Smile

Authors: Petros Dellaportas; Aleksandar Mijatovi\'c;

Arbitrage-Free Prediction of the Implied Volatility Smile

Abstract

This paper gives an arbitrage-free prediction for future prices of an arbitrary co-terminal set of options with a given maturity, based on the observed time series of these option prices. The statistical analysis of such a multi-dimensional time series of option prices corresponding to $n$ strikes (with $n$ large, e.g. $n\geq 40$) and the same maturity, is a difficult task due to the fact that option prices at any moment in time satisfy non-linear and non-explicit no-arbitrage restrictions. Hence any $n$-dimensional time series model also has to satisfy these implicit restrictions at each time step, a condition that is impossible to meet since the model innovations can take arbitrary values. We solve this problem for any $n\in\NN$ in the context of Foreign Exchange (FX) by first encoding the option prices at each time step in terms of the parameters of the corresponding risk-neutral measure and then performing the time series analysis in the parameter space. The option price predictions are obtained from the predicted risk-neutral measure by effectively integrating it against the corresponding option payoffs. The non-linear transformation between option prices and the risk-neutral parameters applied here is \textit{not} arbitrary: it is the standard mapping used by market makers in the FX option markets (the SABR parameterisation) and is given explicitly in closed form. Our method is not restricted to the FX asset class nor does it depend on the type of parameterisation used. Statistical analysis of FX market data illustrates that our arbitrage-free predictions outperform the naive random walk forecasts, suggesting a potential for building management strategies for portfolios of derivative products, akin to the ones widely used in the underlying equity and futures markets.

18 pages, 2 figures; a shorter version of this paper has appeared as a Technical Paper in Risk (30 April 2014) under the title "Smile transformation for price prediction"

Keywords

FOS: Economics and business, Statistical Finance (q-fin.ST), Quantitative Finance - Statistical Finance, Pricing of Securities (q-fin.PR), Quantitative Finance - Pricing of Securities

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
bronze