
arXiv: 1403.5841
Problems in econometrics, insurance, reliability engineering, and statistics quite often rely on the assumption that certain functions are non-decreasing. To satisfy this requirement, researchers frequently model the underlying phenomena using parametric and semi-parametric families of functions, thus effectively specifying the required shapes of the functions. To tackle these problems in a non-parametric way, in this paper we suggest indices for measuring the lack of monotonicity in functions. We investigate properties of the indices and also offer a convenient computational technique for practical use.
Mathematics - Functional Analysis, FOS: Computer and information sciences, Probability (math.PR), FOS: Mathematics, Applications (stat.AP), Statistics - Applications, Mathematics - Probability, Functional Analysis (math.FA)
Mathematics - Functional Analysis, FOS: Computer and information sciences, Probability (math.PR), FOS: Mathematics, Applications (stat.AP), Statistics - Applications, Mathematics - Probability, Functional Analysis (math.FA)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
