
doi: 10.2139/ssrn.1464350
A wide variety of conditional and stochastic variance models has been used to estimate latent volatility (or risk). In both the conditional and stochastic volatility literature, there has been some confusion between the definitions of asymmetry and leverage. In this paper, we first show the relationship among conditional, stochastic, integrated and realized volatilities. Then we develop a new asymmetric volatility model, which takes account of small and large, and positive and negative, shocks. Using the new specification, we examine alternative volatility models that have recently been developed and estimated in order to understand the differences and similarities in the definitions of asymmetry and leverage. We extend the new specification to realized volatility by taking account of measurement errors. As an empirical example, we apply the new model to the realized volatility of Standard and Poor’s 500 Composite Index using Efficient Importance Sampling to show that the new specification of asymmetry significantly improves the goodness of fit, and that the out-of-sample forecasts and VaR thresholds are satisfactory.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
