Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SSRN Electronic Jour...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SSRN Electronic Journal
Article
License: pd
Data sources: UnpayWall
SSRN Electronic Journal
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Tracking Problems, Hedge Fund Replication and Alternative Beta

Authors: Roncalli, Thierry; Weisang, Guillaume;

Tracking Problems, Hedge Fund Replication and Alternative Beta

Abstract

As hedge fund replication based on factor models has encountered growing interest among professionals and academics, and despite the launch of numerous products (indexes and mutual funds) in the past year, it faced many critics. In this paper, we consider three of the main critiques, namely the lack of reactivity of hedge fund replication and its deficiency in capturing tactical allocations; its failure to apprehend non-linear positions of the underlying hedge fund industry and higher moments of hedge fund returns; and, finally, the lack of access to the alpha of hedge funds. To address these problems, we consider hedge fund replication as a general tracking problem which may be solved by means of Bayesian filters. Using the linear Gaussian model as a basis for discussion, we provide the reader with an intuition for the inner tenets of the Kalman filter and illustrate the results' sensitivity to the algorithm specification choices. This part of the paper includes considerations on the type of strategies which can be replicated, as well as the problem of selecting factors. We then apply more advanced Bayesian filters' algorithms, known as particle filters, to capture the non-normality and non-linearities documented on hedge fund returns. Finally, we address the problem of accessing the pure alpha by proposing a core/satellite approach of alternative investments between high-liquid alternative beta and less liquid investments.

Related Organizations
Keywords

tracking problem; hedge fund replication; alternative beta; global tactical asset allocation; Bayes filter; Kalman filter; particle filter; numerical algorithms (SIS, GPP, SIR and RPF); skewness; kurtosis; non-linear exposure; alpha, jel: jel:C60, jel: jel:G11

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Top 10%
hybrid