Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Soil Science Society...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Soil Science Society of America Journal
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

In‐Season Nitrogen Status Sensing in Irrigated Cotton

II. Leaf Nitrogen and Biomass
Authors: Kevin F. Bronson; Teresita T. Chua; J. D. Booker; J. Wayne Keeling; Robert J. Lascano;

In‐Season Nitrogen Status Sensing in Irrigated Cotton

Abstract

Pre‐plant soil NO − 3 –N tests and petiole NO − 3 –N analysis are bases for Upland cotton ( Gossypium hirsutum L.) N management in the western USA. Alternative approaches include proximal multispectral reflectance sensing and chlorophyll meter readings. Our objective was to determine if spectral reflectance and chlorophyll meter measurements correlate with cotton leaf N and biomass. Urea ammonium nitrate was applied after emergence and with low energy precision (LEPA) center‐pivot, surface or subsurface drip irrigation water up to peak bloom. Multispectral reflectance readings 0.5 m above the canopy, chlorophyll meter readings, and biomass samplings were taken at early squaring, early bloom, and peak bloom for 3 site‐years in Lubbock, TX and Ropesville, TX. Green vegetative indices (GVI) and green normalized difference vegetative indices (GNDVI) calculated from reflectance data generally correlated better with leaf N and leaf N accumulation than did red vegetative indices (RVI) and red normalized difference vegetative indices (RNDVI). Biomass and lint yield correlated more often with red‐based indices than green‐based indices. Chlorophyll meter readings correlated with leaf N as often as GVI and GNDVI did. Biomass, however was poorly related to chlorophyll meter readings. These results demonstrate the effectiveness of GVI, GNDVI, and chlorophyll meter readings in assessing leaf N, and RVI and RNDVI in assessing cotton biomass. However, we recommend converting vegetative indices or chlorophyll meter readings to sufficiency indices, which are calculated from indices or readings relative to well‐fertilized plots. Sufficiency indices were able to successfully predict little or no need for in‐season N fertilizer in the low‐yielding 2000 crops (sufficiency index > 0.95), and predicted greater need of N fertilizer in the high‐yielding 2001 crop (sufficiency index < 0.95).

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!