Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HortSciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HortScience
Article . 1992 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HortScience
Article
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrogen Cyanamide-induced Budbreak and Phytotoxicity in `Redhaven' Peach Buds

Authors: Jorge Siller-Cepeda; Leslie H. Fuchigami; Tony H. H. Chen;

Hydrogen Cyanamide-induced Budbreak and Phytotoxicity in `Redhaven' Peach Buds

Abstract

The effects of hydrogen cyanamide (H2CN2) on budbreak and phytotoxicity of l-year-old potted peach trees [Prunus persica (L.) Batsch. cv. Redhaven] over a wide range of concentrations at several stages of dormancy were studied. Endodormancy (180° GS; degree growth stage) began on 1 Oct. Maximum intensity of endodormancy (270° GS) was reached after the plants were exposed to 320 chill units on 1 Nov., and 50% of the buds were broken at 860 chill units on 1 Dec. Five concentrations of H2C N2 (0, 0.125, 0.25, 0.5, and 1.0 m) were applied on 1 and 15 Oct., 1 and 15 Nov., and 1 and 15 Dec. 1990. All concentrations promoted budbreak; however, percent budbreak and phytotoxicity depended on concentration and timing of application. The most effective concentration (greatest budbreak and lowest phytotoxicity) was 0.125 m H2CN2 on all treatment dates. Phytotoxicity was evident at all application dates but was greatest at the highest concentrations. Plants were most resistant to H2CN2 at maximum intensity of endodormancy. Hydrogen cyanamide-induced budbreak was highest during the later stages of endodormancy (295 to 315° GS). Treatments applied during the ecodormancy stage (340° GS) inhibited and delayed budbreak and damaged buds and stems. Chemical name used: hydrogen cyanamide (H2CN2, Dormex).

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Average
gold