
doi: 10.21236/ada263198
Abstract : In this paper plane elastic curves are revisited from a viewpoint that emphasizes curvature properties of these curves. The family of elastic curves is considered in dependence of a tension parameter Sigma and the squared global curvature maximum K2/m. It is shown that for any elastic curve K2/m is bigger than the tension parameter Sigma. A curvature analysis of the fundamental forms of the elastic curves is presented. A formula is established that gives the maximum turning angle of an elastica as a function depending on K2/m and Sigma. Finally, it is shown that an elastic curve can be represented as a linear combination of its curvature, arc length and energy function and that any curve with this property is an elastic.... Elastic curves, Curvature analysis.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
