Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.econstor...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Statistical Science
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Project Euclid
Other literature type . 1986
Data sources: Project Euclid
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Statistical Science
Article . 1986 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1201/978020...
Part of book or chapter of book . 2017 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1201/978020...
Book . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

Generalized Additive Models

Generalized additive models
Authors: Hastie, Trevor; Tibshirani, Robert;

Generalized Additive Models

Abstract

The classical linear regression model expresses the response vector Y as a function of the predictor variables \(X_ i\) through the model \(Y=\sum_{i}X_ i\beta_ i+e\), where the \(X_ i\) are observed, the \(\beta_ i\) are estimated by least squares or some other technique, e is the vector of errors. The authors replace the \(X_ i\beta_ i\) by unspecified smooth functions \(S_ i(X_ i)\), which are then estimated by a scatterplot smoother in an iterative procedure they call the local scoring algorithm, which is a generalization of the Fisher scoring procedure for computing maximum likelihood estimates. The paper is well-written, not technically demanding, provides a general framework in which to view the estimation procedure and a general form of local scoring applicable to any likelihood-based regression model. The authors illustrate the method with binary response and survival data and include the loglinear model and Cox's model for censored data. The commentaries following by D. R. Brillinger, J. A. Nelder, C. J. Stone, and P. M. McCullagh are quite stimulating in terms of placing the paper in perspective and suggesting further relevant work. The comments of Brillinger and Stone are especially informative.

Keywords

Generalized linear models, likelihood-based regression model, binary response, Linear regression; mixed models, generalization of the Fisher scoring procedure, Point estimation, nonlinearity, scatterplot smoother, smoothing, generalized linear models, iterative procedure, survival data, Linear inference, regression, nonparametric regression, partial residuals, Foundations and philosophical topics in statistics, local scoring algorithm, censored data, Nonparametric estimation, loglinear model, Cox's model

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.01%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.01%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2K
Top 0.01%
Top 0.01%
Top 10%
Green
hybrid