
Random variables $X$ and $Y$ are mutually completely dependent if there exists a one-to-one function $g$ for which $P\lbrack Y = g(X)\rbrack = 1.$ An example is presented of a pair of random variables which are mutually completely dependent, but "almost" independent. This example motivates considering a new concept of dependence, called monotone dependence, in which $g$ above is now required to be monotone. Finally, this monotone dependence concept leads to defining and studying the properties of a new numerical measure of statistical association between random variables $X$ and $Y$ defined by $\sup \{\operatorname{corr} \lbrack f(X), g(Y)\rbrack\},$ where the $\sup$ is taken over all pairs of suitable monotone functions $f$ and $g.$
monotone correlation, Measures of association (correlation, canonical correlation, etc.), 62H05, association, sup correlation, Characterization and structure theory for multivariate probability distributions; copulas, monotone dependence, Correlation, 62H20
monotone correlation, Measures of association (correlation, canonical correlation, etc.), 62H05, association, sup correlation, Characterization and structure theory for multivariate probability distributions; copulas, monotone dependence, Correlation, 62H20
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 75 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
