<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract We propose a method for reducing the spatial discretization error of coarse computational fluid dynamics (CFD) problems by enhancing the quality of low-resolution simulations using a deep learning model fed with high-quality data. We substitute the default differencing scheme for the convection term by a feed-forward neural network that interpolates velocities from cell centers to face values to produce velocities that approximate the fine-mesh data well. The deep learning framework incorporates the open-source CFD code OpenFOAM, resulting in an end-to-end differentiable model. We automatically differentiate the CFD physics using a discrete adjoint code version. We present a fast communication method between TensorFlow (Python) and OpenFOAM (c++) that accelerates the training process. We applied the model to the flow past a square cylinder problem, reducing the error to about 50% for simulations outside the training distribution compared to the traditional solver in the x- and y-velocity components using an 8x coarser mesh. The training is affordable in terms of time and data samples since the architecture exploits the local features of the physics while generating stable predictions for mid-term simulations.
FOS: Computer and information sciences, Computer Science - Machine Learning, Deep Learning, Finite volume method, Fluid Dynamics (physics.flu-dyn), OpenFOAM, FOS: Physical sciences, Discretization error, Physics - Fluid Dynamics, Computational fluid dynamics, info:eu-repo/classification/ddc/620, 620, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Deep Learning, Finite volume method, Fluid Dynamics (physics.flu-dyn), OpenFOAM, FOS: Physical sciences, Discretization error, Physics - Fluid Dynamics, Computational fluid dynamics, info:eu-repo/classification/ddc/620, 620, Machine Learning (cs.LG)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |