Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Near Wellbore Stimulation by Acoustic Waves

Authors: Sau-Wai Wong; Fred van der Bas; Jeroen Groenenboom; Pedro Zuiderwijk;

Near Wellbore Stimulation by Acoustic Waves

Abstract

Abstract Reduced well productivity or injectivity is often caused by near-wellbore formation damage due to the interaction of reservoir formation with drilling and completion fluids. The problem can be further compounded by production induced formation damage. A prime example is fines migration and fines plugging of rock pores or gravel packs. High frequency sonic waves, especially ultrasonic waves have been used in many industrial applications to remove contaminants like dirt, oil, and grease from parts immersed in fluids. An obvious extension of this application is the removal of wellbore impairment by exposing it to high frequency acoustic waves. Although the concept is old, successful large-scale application of acoustic well stimulation is not common. Greater understanding of the technology's applicability and limitations are essential in order to design effective downhole acoustic tool and guide successful field implementation. To this end, we have embarked on a dedicated project to mature the technology, which includes dedicated experimentation and tool design. In this paper, we focus on some key experimental results and discuss potential applications in production engineering.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?